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Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast.
I. Theoretical approach
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We present a phase-field model for the dynamics of the interface between two inmiscible fluids with
arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the
model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these
equations to first order in the interface thickness. We also compute the effect of such corrections on the linear
dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to
control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In par-
ticular, the convergence appears to be slower for high viscosity contrasts.@S1063-651X~99!08208-2#

PACS number~s!: 47.54.1r, 47.20.Hw, 05.90.1m, 05.10.2a
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I. INTRODUCTION

The dynamics of morphologically unstable interfaces i
major problem in nonequilibrium physics from both fund
mental and applied points of view. Relevant examples
those are dendritic growth, directional solidification, flows
porous media, flame propagation, electrodeposition, or b
terial growth@1#. The so-called Saffman-Taylor problem h
played a central role in this context because of its rela
simplicity both experimentally and in its theoretical form
lation @1,2#. It deals with the motion of the interface betwee
two inmiscible fluids within a Hele-Shaw cell. Due to th
highly nonlinear and nonlocal nature of the interfacial d
namics of such systems, analytical understanding is sc
and restricted to high viscosity contrast@3#, so in general one
relies mostly on numerical work@4–9#.

From a mathematical point of view, such systems are
ferred to as moving boundary problems. In practice this
plies that one has to keep track of the interface where bou
ary conditions are applied, and solve a~linear! problem in
the bulk which determines in turn the motion of the boun
ary. This kind of problem has traditionally been addressed
terms of boundary integral methods which reduce the
namics of the interface to integrodifferential equations. T
numerical integration of these equations is quite involv
however, particularly for long times, due to stiffness a
numerical instability of the equations. In the case of He
Shaw flows, boundary integral methods have successf
been applied@6–9#, although quite sophisticated algorithm
have usually been necessary@9#.

Recently, so-called phase-field equations have been
posed in the context of solidification problems as a differ
approach to the interface dynamics@10–19#. In the spirit of
the well known time-dependent Ginzburg-Landau mod
@20#, the method avoids the tracking of the interface by
troducing an auxiliary field~analogous to an order param
eter! which locates the interface and whose dynamics
coupled to the other physical fields through an appropr
set of partial differential equations. In this way, there is
PRE 601063-651X/99/60~2!/1724~10!/$15.00
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boundary condition to apply explicitly at the interface a
the whole system is treated as bulk.

This method introduces a mesoscalee, which is not
present in the original macroscopic equations and give
finite thickness to the interface. The equations are then c
sen in such a way that the original bulk equations and bou
ary conditions are recovered in thee˜0 limit. Therefore, the
phase-field equations for a given model are not intended
describe the true mesoscale physics of the system, and
then not unique. In fact there is considerable freedom
choosing a particular form of them, with criteria of eith
numerical efficiency and convergence@13# or other physical
criteria such as thermodynamic consistency@14#. In any case,
the nature of the phase-field approach is completely differ
from the sharp-interface models, and therefore the actual
merical advantages and limitations of both are also qu
distinct. This makes the two approaches complementary
competitive in different physical situations. A remarkab
advantage of the phase-field approach is that it is much s
pler to implement satisfactorily from a numerical point
view. On the other hand, the phase-field approach is usu
more amenable to generalization, in the sense that it all
one to introduce variations and new elements without a
major modification of the numerical scheme, for instance
the treatment of fluctuations, liquid crystals@18#, and other
complex fluids @9#. Finally, the phase-field approach ca
handle very naturally situations where the sharp interf
model is not appropriate, such as for instance topolo
changes like interface pinching leading to the breakup
bubbles.

In this paper we introduce a phase-field model for He
Shaw flows with arbitrary viscosity contrast~or Atwood ra-
tio! c5(m12m2)/(m11m2). Although in the high contras
limit c51 the Hele-Shaw dynamics is quite analogous to
one-sided solidification problem~in the appropriate approxi
mations@8#!, the arbitrary viscosity contrast case has be
shown to exhibit quite different dynamics than solidificatio
problems, and has in fact opened some interesting quest
particularly concerning the sensitivity of finger competitio
1724 © 1999 The American Physical Society
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to viscosity contrast@4–7,21# and the long time asymptotic
of the low viscosity contrast limit@7#.

The model presented here is inspired in the vortex-sh
formulation of the problem@4#, in which the relevant dy-
namic variable in the bulk is the stream function. Simi
ideas have previously been applied to describe physic
diffuse interfaces in the context of steady state selection
thermal plumes@22#. Usually phase-field models are nat
rally suited to symmetric situations~two-sided models!. The
present case of Hele-Shaw flow is no exception and beco
most efficient forc50. Finitec can also be handled but th
model becomes computationally inefficient in the limitc
˜1, since this limit must be taken formally after thee˜0
limit. A phase-field model for this one-sided case must dif
essentially from the one presented here, such as in the s
of Ref. @19#.

The layout of the rest of the paper is as follows: in S
II A we recall the Hele-Shaw macroscopic equations in ter
of the stream function, whereas in Sec. II B we present
phase-field equations. We then show in Sec. III that
phase-field equations reduce to the macroscopic ones in
sharp-interface limit. Deviations from that limiting behavi
are derived from the phase-field equations themselves to
order in the interface thickness in Sec. IV, and their effect
the linear regime is computed in Sec. V. Finally, a br
summary is given in Sec. VI.

II. MODEL

We consider the general case of an interface with surf
tension s between two fluids with distinct viscositie
(m1 ,m2) and densities (r1 ,r2) moving in a rectangular
Hele-Shaw cell of widthW ~x direction! and gapb ~z direc-
tion!, under an effective gravitygeff ~negativey direction!
and with an injection velocityV` ~positivey direction!. La-
bel 1 ~2! corresponds to the upper~lower! fluid.

A. Macroscopic equations

Darcy’s law is assumed to hold for each fluid, thus defi
ing a certain velocity potential in each bulk, but not on t
interface. In contrast, the bulk incompressibility and the c
tinuity of normal velocities on the interface allow us to d
fine its harmonic conjugate, the stream functionc, even on
the interface throughux5]yc, uy52]xc, whereux anduy
are thex andy components of the fluid velocity fielduW . Then
Darcy’s law results in a Laplace equation for the stre
function~potential flow! and a certain jump for the tangenti
fluid velocities on the interface, whose value takes into
count the Gibbs-Thomson relationship. The fact that
stream function is continuous at the interface makes the
of this variable particularly convenient. The Hele-Sha
equations in stream function formulation@4# can be written
in dimensionless form as

¹2c50, ~2.1!

c r~01!2c r~02!52g2c@c r~01!1c r~02!#, ~2.2!

cs~01!5cs~02!52vn . ~2.3!
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Herer is a coordinate normal to the interface and with orig
on it, positive in fluid 1~06 then means on the interfac
coming from each side!, s is the arclength along the inter
face, and the unit vectors satisfyŝ3 r̂ 5 x̂3 ŷ, the subscripts
stand for partial derivatives except forvn(s), which is the
normal velocity of the interface, positive towards fluid 1, a

g~s!

2
[Bks1 ŷ• ŝ, ~2.4!

with k(s) the interface curvature, positive for a bump in
fluid 2. The dynamics are controlled by the two dimensio
less parameters

B5
b2s

12W2FV`~m12m2!1geff

b2

12
~r12r2!G , c5

m12m2

m11m2
.

~2.5!

We will not be interested in negative values ofB ~stable
configuration! nor c ~mirror image interface of2c!. ThusB
is a dimensionless surface tension, and can be understoo
the ratio between the capillary~stabilizing! force and the
driving ~destabilizing! force ~injection plus gravity!, andc is
the viscosity contrast, which is so far completely arbitra
0<c<1. This corresponds to having set ourselves in
frame moving with the fluid at infinity~or, equivalently, with
the mean interface! and takenW as the unit length andU*
[cV`1geff@b

2(r12r2)/12(m11m2)# as the unit velocity
~see Ref.@4#!.

Note that Eqs.~2.1! and ~2.2! can be written together as

¹2c52w, w5$g~s!1c@c r~01!1c r~02!#%d~r !,
~2.6!

whered(r ) is the Diracd distribution andw[ ẑ•(¹W 3uW ) is
the fluid vorticity, which is confined to the interface.

B. Phase-field equations

We put forward the following phase-field model for th
above equations withu being the phase field:

e
]c

]t
5¹2c1c¹W •~u¹W c!1

1

e

1

2&
g~u!~12u2!,

~2.7!

e2
]u

]t
5 f ~u!1e2¹2u1e2k~u!u¹W uu1e2ẑ•~¹W c3¹W u!,

~2.8!

where f (u)[u(12u2), and g(u)/2[ ŝ(u)•(B¹W k(u)1 ŷ),
k(u)[2¹W • r̂ (u), with r̂ (u)[¹W u/u¹W uu and ŝ(u)[ r̂ (u)
3 ẑ, together with the boundary condition

u~y˜6`!561, ~2.9!

so thatu511(21) corresponds to fluid 1~2!. g~u! andk~u!
are functionals which generalize the magnitudes defi
above for the interface, now to any level set of the pha
field.
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If we leave the two last terms aside, Eq.~2.8! is the Cahn-
Hilliard equation for a nonconserved order parameter
modelA ~without noise! in the classification of Ref.@20# of
time-dependent Ginzburg-Landau models. The field in t
model is known to relax towards a kink solution of a certa
width in a short time scale, and then to evolve to minim
the length of the effective interface according to Allen-Ca
law ~i.e., with normal velocity proportional to the local cu
vature!. The factor multiplying the laplacian has bee
choosen to bee2 for the kink width to beO(e), so thate can
be considered the interface thickness, i.e., the small par
eter in the asymptotic analysis that will be performed in S
III. On the other hand, thee2 factor in the time derivative
ensures that relaxation toward the kink is much faster t
the evolution of the interface. Notice that modelA describes
the relaxational dynamics of a nonconserved order par
eter, whereas our problem is actually nonrelaxational
strictly conserved~mass conservation and inmiscibility!. The
other two term in the phase-field equation will correct th
apparent contradiction. In order to cancel out the local Alle
Cahn dynamics of the interface which is built in modelA, we
add the terme2k(u)u¹W uu. It will be shown that such term
cancels out Allen-Cahn law by giving rise, to leading ord
to an identical contribution but with opposite sign. Wi
these elements so far, our phase field relaxes to a kink pr
located along an arbitrary interface which~if sufficiently
smooth! remains almost completely stationary, regardless
its shape. This is because the dynamical effect of surf
tension associated with the Ginzburg-Landau free energy
been removed~up to first order!, and the interface has not ye
been coupled to the fluid flow, represented by the stre
function. This coupling is achieved by adding the last term
Eq. ~2.8!, which stands for2e2uW •¹W u, and thus sets the
phase field—and therefore the interface—in the frame m
ing with the fluid velocityuW . This term restores the fully
nonlocal dynamics of the Hele-Shaw model. In particula
yields the continuity of normal velocities@Eq. ~2.3!#, and
reintroduces surface tension, which is contained in the
namical equation for the stream function throughg~u!.

As for Eq. ~2.7!, its right hand side is intended to repro
duce Eq.~2.6!, and therefore also Eqs.~2.1! and~2.2!. If the
phase fieldu has a kink shape, 12u2 is a peaked function
which, when divided bye, gives rise to thed distribution for
the vorticity. However, this only accounts for theg in the
weight of thed. The part proportional to the viscosity con
trastc must be put apart as thec¹W •(u¹W c) term because o
the nonlocal character ofc r(0

1)1c r(0
2). Finally, the time

derivative is multiplied bye to recover the Laplacian~and
not diffusive! behavior of the Hele-Shaw flow in the shar
interface limit.

In spite of important differences, the proposed phase fi
equations~2.7! and ~2.8! contain certain similarities to the
problem of a thermal plume in a Hele-Shaw cell under gr
ity @22#. In such a problem there is only one fluid heat
from the center of the channel. The heat diffuses toward
lateral walls, but the temperature profile is not linear, sin
the fluid density and viscosity decrease with temperature
that the fluid in the middle of the channel raises becaus
buoyancy. As a result a so-called plume of hot fluid with
shape similar to the Saffman-Taylor finger, with a station
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upward velocity, and a width close to12 is formed. Outside
the plume the fluid is colder, and the transition between
two zones is relatively abrupt, so that one can think in ter
of an interface of a certain small thickness. Thus the equa
for the phase field@Eq. ~2.8!# could be thought of as a diffu
sion equation for the temperature in a thermal plume. Ho
ever, the available equations for that problem hold only
the steady state@22#, whereas our phase-field model is in
tended to describe the whole dynamics. Generalization of
thermal plume equations to include the dynamics is
trivial for nonvanishing viscosity contrast. As a matter
fact, Ref. @22# must restrict itself to low viscosity
contrasts—as is the case in thermal plumes—whereas
formulate the model for arbitrary viscosity contrast. An i
teresting difference is the terme2k(u)u¹W uu cancelling out
Allen-Cahn law. The absence of that term in the therm
plume equations does not prevent the Hele-Shaw steady
equations from being recovered in the sharp-interface li
because of the lower power ofe used in theuW •¹W u term, but
then Allen-Cahn law arises in the corrections at first orde
the interface thickness. In contrast, by means of t
e2k(u)u¹W uu term we achieve cancellation of the Allen-Cah
law even in such corrections, as we will see in Sec.
Finally, another major difference in the case of therm
plumes is the absence of surface tension.

III. SHARP-INTERFACE LIMIT

In order to analyze the small-e behavior of the phase-field
equations~2.7! and~2.8!, we expand their fields in powers o
e. The expected abrupt variations of these fields through
interface will make it necessary to perform two different e
pansions. In the interface region~inner region! we rescale the
differential operators appearing in these phase-field eq
tions by rewriting them in terms of the stretched norm
coordinater[r /e ~see the Appendix!. The expansions in the
inner region will be matched order by order in powers ofe to
those in the outer region~in the bulk far from the interface!,
where the coordinates are not rescaled. The outer and i
expansions are written, respectively, as

a~r ,s,t !5a0~r ,s,t !1ea1~r ,s,t !1e2a2~r ,s,t !1¯ ,
~3.1!

A~r,s,t !5A0~r,s,t !1eA1~r,s,t !1e2A2~r,s,t !1¯ ,
~3.2!

where capital letters denote fields written in terms of t
rescaled coordinate. This results in the following match
conditions:

A0~r,s,t !5a0~06,s,t !,

A1~r,s,t !5a1~06,s,t !1ra0,r~06,s,t ! as r˜6`

A2~r,s,t !5a2~06,s,t !1ra1,r~06,s,t !1
r2

2
a0,rr ~06,s,t !,

•••. ~3.3!
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Therefore,

A0,r~6`,s,t !5A1,rr~6`,s,t !5¯50,

A1,r~6`,s,t !5a0,r~06,s,t !,

A2,r~r,s,t !5a1,r~06,s,t !1ra0,rr ~06,s,t ! as r˜6`,

••• . ~3.4!

In practice, one does not find explicit solutions for t
fields, but some set of equations for them. A sharp-interf
model for the small-e dynamics of the phase-field equatio
~2.7! and ~2.8! is then given by the set of equations obey
by the outer fields: Those obtained at lowest order in
interface thicknesse „O(e0)… constitute thee˜0 limit of the
phase-field model, which we carry out in this sectio
whereas those obtained up toO(e) represent what we will
call ~following Karma and Rappel@13#! a ‘‘thin-interface’’
model, a model keeping finite interface thickness effe
such as the one derived in Sec. IV.

A. Outer equations

Straightforward substitution of the outer expansion@Eq.
~3.1!# in the outer equations,~2.7! and ~2.8!, will yield the
bulk fields: a functional dependence for the phase-field an
differential equation for the stream function.

Equation~2.8! reads

f 0~u!5 f ~u0!50⇒u050,615const atO~e0!,
~3.5!

f 1~u!522u150⇒u150 at O~e!, ~3.6!

and iterating, we obtain

u i50 ; i .0. ~3.7!

Due to Eqs.~3.5! and ~3.7!, u561 to all orders, and,
therefore, the (12u2) term in Eq.~2.7! does not enter this
outer limit, whereas the viscosity contrast term in that eq
tion becomes6c¹2c, depending on the phase. Hence E
~2.7! in this outer region reads

e
]c

]t
5~16c!¹2c, ~3.8!

which implies

¹2c050,
]c i

]t
5~16c!¹2c i 11 , ; i>0, ~3.9!

except for c51. Note that we have recovered the sha
interface equation~2.1! in thee˜0 limit. For c51, Eq.~2.1!
is still recovered in the11 phase~viscous fluid!, whereas in
the21 phase~inviscid fluid! the stream function turns out t
be constant in time to all orders. Although the inviscid flu
does not enter the problem in this limit@see Eq.~2.2!#, it still
has a nontrivial dynamics, since the stream function in
must evolve to keep satisfying Eq.~2.3!, and therefore,
e

e

;

,

a

-
.

-

it

strictly speaking, we do not really get the right shar
interface limit forc exactly equal to 1. However, the mod
can be applied to physical high viscosity contrast pairs
fluids. We shall come back to this point in Sec. IV.

B. Inner equations

In turn, the interface boundary conditions for the strea
function are given by the leading-order outer quantit
c0,s(0

6) andc0,r(0
1)2c0,r(0

2). According to the match-
ing conditions~3.3! and ~3.4!, these equal the inner one
C0,s(6`) and C1,r(1`)2C1,r(2`), respectively. Be-
cause of the specific structure of our phase-field equatio
~2.7! and~2.8!, we will need the first two orders in the inne
version of Eq.~2.8! and the lowest one in that of Eq.~2.7! to
obtainC0,s(6`), and the two first in Eq.~2.7! and the low-
est in Eq.~2.8!, to obtainC1,r(1`)2C1,r(2`). Therefore,
we compute the two first orders in both Eqs.~2.8! and~2.7!,
by substituting the inner expansion~3.2! in the inner ~re-
scaled! equations~all whose terms are derived in the Appe
dix!:

Equation~2.8! up to O(e) reads@see Eqs.~3.2!, ~A10!,
~A11!, and~A19!#

2evnQ0,r5 f ~Q0!1eQ1f 8~Q0!1Q0,rr1eQ1,rr

1e~Q0,rC0,s2Q0,sC0,r!. ~3.10!

Its O(e0) part,

f ~Q0!1Q0,rr50, ~3.11!

together with the boundary conditions specified by t
matching@Eqs.~3.3! and~3.4!# with the outer expansion Eq
~3.5!, gives the so-called kink solution

Q05tanh
r

&
⇒Q0,r5

1

&
sech2

r

&
5

1

&
~12Q0

2!.

~3.12!

Hence we find theQ0,s term to vanish, and Eq.~3.10! reads,
at O(e),

2vnQ0,r5Q1f 8~Q0!1Q1,rr1Q0,rC0,s . ~3.13!

As for Eq. ~2.7!, it reads, up toO(1/e) @see Eqs.~3.2!,
~A9!, ~A10!, ~A12!, and~A17!#,

1

e2 C0,rr1
1

e
~C1,rr2kC0,r!1cH 1

e2 ~Q0C0,r!r

1
1

e
@~Q0C1,r!r1~Q1C0,r!r2kQ0C0,r#J

1
1

e

1

2&
g~12Q0

2!50. ~3.14!

From itsO(1/e2) part, we know that

C0,r~11cQ0!5const. ~3.15!
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SinceC0,r has no correspondence with the outer expans
it must vanish at infinity@Eq. ~3.4!#. Then we know the con-
stant to be zero. Now, since the term in brackets vanis
only for c51 andr˜2`, we deduce that

C0,r50. ~3.16!

We then put Eq.~3.16! into Eq. ~3.14! at O(1/e):

C1,rr1c~Q0C1,r!r52
g

2
Q0,r . ~3.17!

Finally, Eqs.~3.13! and~3.17! will yield the macroscopic
equations~2.3! and~2.2!, respectively: Eq.~3.13! can be re-
written in the form

L̂Q1[F f 8~Q0!1
]2

]r2GQ152Q0,r~vn1C0,s!.

~3.18!

We realize thatL̂Q0,r equals the partial derivative with re
spect tor of Eq. ~3.11!, which, in turn, vanishes. Hence w
write the solvability condition

E
2`

1`

~vn1C0,s!Q0,r
2 dr50. ~3.19!

Using Eq. ~3.16! we know thatC0,rs505C0,sr , and can
takeC0,s out of the integral as well asvn . Since the quantity
left under the integral sign (Q0,r)2 is always positive, we
find thatvn1C0,s must vanish, and, matching with the out
expansion, we obtain Eq.~2.3! for c0 .

On the other hand, integrating Eq.~3.17! with respect to
r, we obtain

C1,r52
g

2
Q02cQ0C1,r1a1~s!, ~3.20!

where a1(s) is an arbitrary function ofs. Computing
C1,r(1`)2C1,r(2`) and matching with the outer expan
sion @Eq. ~3.4!# gives Eq.~2.2! for c0 . This completes the
sharp-interface limit.

IV. FIRST ORDER CORRECTIONS
TO THE SHARP-INTERFACE LIMIT

In the phase-field model the interface width and the c
vergence to the sharp-interface limit is controlled by t
small but finite value of the parametere. Then, the question
of which value ofe is needed to reproduce the actual He
Shaw dynamics accurately for given values of the phys
parametersB andc arises. This question can be qualitative
answered by noting the distinct roles played bye in the
phase-field equations~2.7! and ~2.8!.

The e factors appearing ine2¹2u, e2k(u)u¹W uu and
(1/e)(1/2&)g(u)(12u2) all stand for the interface thick
ness, and this is required to be small compared to the lo
tudinal length scaleuku21 of the interface:euku!1. In con-
trast, thee in e(]c/]t) has nothing to do with the interfac
thickness~and we will therefore denote it byẽ from now on!,
n,

es

-

-
l

i-

but its aim is to ensure that the stream function is Laplac
and not diffusive in theẽ˜0 limit, which commutes with
the e˜0 one @the reader can convince himself of this b
going through the limit again but now consideringẽ of
O(e0)#: ẽ sets the time scale of the diffusion of the strea
function through a given characteristic length of wave nu
ber k,ẽ/(16c)k2 @see Eq. ~3.8!#, which must be much
smaller than the characteristic growth rate of the interfa
uvu21, so that the stream function is slaved to the interfa
ẽuvu/k2!16c. We also realize that the viscosity contrastc
can be arbitrarily raised, as long asẽ is correspondingly low-
ered. So our model is valid even forc˜1, as long as this
limit is taken formally after thee˜0 one.

The e2 in e2(]u/]t) represents the relaxation time of th
phase field toward the steady kink solution@see Eq.~2.8!#,
which must be kept well below the interface growth tim
uvu21 for the phase field to remain close to the kink profi
during the interface evolution:e2uvu!1. This factor must be
the same that the one ine2ẑ•(¹W c3¹W u) in order to obtain
the macroscopic equation~2.3!. In fact there are at least two
distinct powers ofe for this relaxation time~e and e2! for
which the right sharp-interface limit is achieved, and the c
rections which we will compute would also be the same.

To sum up, there are at least two independent small
rameters~e and ẽ! controlling the limit. When trying to ap-
proach macroscopic solutions by means of numerical in
gration of the phase-field equations, it is very convenien
vary them independently in order to save computing tim
since both affect it@23#.

A more quantitative answer to the question of the nec
sary values ofe and ẽ to obtain a given precision can b
given by extending the asymptotic analysis of Sec. III to fi
order in the interface thicknesse consideringẽ of O(e).
Thus we will obtain a thin-interface model containing th
corrections to the limit up to that order ine and ẽ.

According to the matching conditions~3.3!, the correc-
tions to the interface boundary conditions for the stre
function at first order in e, c1,s(0

6) and c1,r(0
1)

2c1,r(0
2), are to be identified as terms in the expansion

C1,s(6`) and C2,r(1`)2C2,r(2`), respectively. Now
we will need the second order in Eq.~2.8! and the first in Eq.
~2.7! to computeC1,s(6`), and the second in Eq.~2.7! and
the first in Eq. ~2.8! to obtain C2,r(1`)2C2,r(2`).
Therefore, we must compute the next order both in Eqs.~2.8!
and ~2.7!, but, first, we can still extract some informatio
from the lower orders.

On the one hand, we found thatC0,s52vn . We put this
into Eq. ~3.13! to obtain the differential equation forQ1 ,

Q1f 8~Q0!1Q1,rr50, ~4.1!

with boundary conditions coming from the matching E
~3.3! with Eq. ~3.7! Q1(6`)5Q1,r(6`)50 and solution
Q150.

The integral with respect tor of Eq. ~3.20! is

C152
g

2 E Q0dr

11cQ0
1a1~s!E dr

11cQ0
. ~4.2!
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According to the matching equation~3.3!, the r˜6` as-
ymptotics ofC1(r) should consist of a finite termc1(06)
and a diverging onerc0,r(0

6). For vanishing viscosity con
trast, the last integral in Eq.~4.2! is ra1(s), and clearly does
not contribute to the finite termc1(06). Then, sinceQ0 is
an odd function ofr, its integral with respect tor will be
even, andc1(01)5c1(02), i.e., the fluid velocity normal to
the interface will be continous on it.

For nonzero values ofc, however, one must compute th
integrals in Eq.~4.2!, find their r˜6` asymptotics, and
identify c1(06) andc0,r(0

6). Requiring this latter quantity
to be consistent with Eq.~2.2! for c0 , one fixesa1(s); put-
ting this back into the identifiedc1(06) value, one finds

c1~06!52
&

2
$g1c@c0,r~01!1c0,r~02!#% ln

16c

2

1a2~s!, ~4.3!

wherea2(s) is another arbitrary function ofs. This will give
rise to a discontinuity in the fluid velocity:

c1,s~01!2c1,s~02!52
&

2
$gs1c@c0,rs~01!

1c0,rs~02!#% ln
11c

12c

52c&$gs1c@c0,rs~01!

1c0,rs~02!#%1O~c3!. ~4.4!

In order to fix ]sa2(s), we compute the next orde
„O(e2)… of Eq. ~2.8! to obtain@see Eqs.~3.2!, ~A10!, ~A11!,
and ~A19!#

Q2f 8~Q0!1Q2,rr2rkvnQ0,r1C1,sQ0,r50. ~4.5!

This has the same structure as Eq.~3.13!, and an analog
solvability condition applies:

E
2`

1`

C1,sQ0,r
2 dr50. ~4.6!

Substitution of the expression forC1 obtained by performing
the integrals in Eq.~4.2! into this condition and subseque
computation of the resulting integral fixes]sa2(s) so that

c1,s~06!52
&

2 Fgs

2
1c

c0,rs~01!1c0,rs~02!

2 G
3F12

1

c2 1S 611
~1/c3!2~3/c!

2 D ln
11c

12cG
5&Fgs

2
1c

c0,rs~01!1c0,rs~02!

2 G
3F5

6
7c1

2

5
c21O~c3!G . ~4.7!

Finally, to obtainC2,r(1`)2C2,r(2`), we need Eq.
~2.7! at „O(e0)… @see Eqs.~3.2!, ~A9!, ~A10!, ~A12!, and
~A17!#:
C2,rr2kC1,r2]svn1c@~Q0C2,r!r2kC1,rQ02]svnQ0#

13BrkksQ0,r50. ~4.8!

Integrating this fromr˜2` to r˜1`, we obtain

@C2,r#2`
1`2kE

2`

1`

~11cQ0!C1,rdr2]svn@r#2`
1`

1c@Q0C2,r#2`
1`50, ~4.9!

where we have omitted integrals of odd functions ofr. We
use Eq.~3.20! to rewrite the integrand of the remaining in
tegral as2(g/2)U01a1(s). U0 is an odd function ofr and
does not contribute to the integral, whereasa1(s) gives rise
to a divergent term of the type@r#2`

1` . According to the
matching equation~3.4!, c1,r(0

6) corresponds to the finite
part of C2,r(6`), so that we find

c1,r~01!2c1,r~02!52c@c1,r~01!1c1,r~02!#,
~4.10!

which will leave the jump of the normal derivative of th
stream function across the interface unaffected at first o
in the kink width.

Putting Eqs.~3.8!, ~2.3!, and~2.2! for c0 , and Eqs.~4.7!
and ~4.10! together, we obtain an effective sharp-interfa
model for the dynamics of theu50 level set up to first order
in e and ẽ:

ẽ
]c

]t
5~16c!¹2c, ~4.11!

c r~01!2c r~02!52G, ~4.12!

cs~06!52vn2e
&

2

Gs

2
g6~c!

52vn1e&
Gs

2 F5

6
7c1

2

5
c21O~c3!G ,

~4.13!

whereG[g1c@c r(0
1)1c r(0

2)# is the weight of the vor-
ticity defined in Eq.~2.6! evaluated up toO(e) and

g6~c!512~1/c2!1S 611
~1/c3!2~3/c!

2 D ln
11c

12c
.

Note that the desired corrections to the limiting equatio
~2.1!–~2.3! in Eqs. ~4.11! and ~4.13! go asẽ and e, respec-
tively, and the fact that Eq.~2.2! remains unaffected. Note a
well that the correction ine appearing in Eq.~4.13! has noth-
ing to do with an Allen-Cahn law. So thee2k(u)u¹W uu term
has cancelled this out even in the first order corrections.

V. LINEAR DISPERSION RELATION UP TO
FIRST ORDER IN THE INTERFACE THICKNESS

In order to see how such corrections affect some relev
specific situation, we compute the linear dispersion relat
of a perturbation to the planar interfacey(x)5Aevt1 ikx for
Eqs.~4.11!–~4.13!. We make the ansatz
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c~x,y!5a6Aevt1 ikx2q6uyu, ~5.1!

inspired by the actual Hele-Shaw result, where now the
efficient a6 allows for distinct amplitudes in each phase f
the stream function to satisfy the discontinuity in the norm
velocities of Eq.~4.13!, whereas the decay lengthq6 in they
direction is set not only by the wavelength of the perturb
tion 2p/k, but also by the diffusion length in Eq.~4.11!,
which is also different in each phase. Thus Eq.~4.11! yields

q65ukup6 , p651A11
ẽv

k2~16c!
. ~5.2!

In turn, taking into account thatvn5vAevt1 ikx and g
52iA sgn(k)w0e

vt1ikx—wherev05uku(12Bk2) is the actual
Hele-Shaw growth rate—Eq.~4.13! fixes a6 to be

a65
iv

k F12euku
&

2
g6~c!

p11p2

2 G . ~5.3!

Finally, Eq. ~4.12! requires that the following dispersion re
lation is satisfied:

v5
v0

@~11c!p21~12c!p1#/2 F11euku
&

2

p21p1

2

3
g1~12c!p11g2~11c!p2

~12c!p11~11c!p2
G1O~e2! ~5.4!

5v0S 1

A11~ ẽv/k2!
2euku&

5

6D 1O~c2!1O~e2!.

~5.5!

This consists of the well known Hele-Shaw growth rate m
tiplied by a factor smaller than 1, carrying the corrections
e and ẽ. We identify the conditions one and ẽ heuristically
derived at the beginning of Sec. IV to control how close t
factor is to 1, and in general how close the stream functio
to the actual Hele-Shaw one:ẽv/k2!16c ~within p6! and
euku!1 in Eqs.~5.2!–~5.4!, and the simplified version up to
O(c) ẽv/k2!1 andeuku!1 in Eq.~5.5!. The amplitude fac-
tor @Eq. ~5.3!# can also be expanded in powers ofc making
use of Eq.~5.5! to find

a65
iv0

k S 1

A11~ ẽw/k2!
7ceuku& D 1O~c2!1O~e2!.

~5.6!

Since these corrections have a stabilizing effect, th
could affect the selection of the steady finger width. As
matter of fact, Ben Amar already showed that the]s( ŷ• ŝ)
term of Gs in Eq. ~4.13! on its own was capable of selectin
a finger width greater than12 @22#. Then, for small enough
values of the physical surface tension~i.e., the physical se-
lection mechanism!, for which a width very close to12 should
be expected, this term could turn out to control the selec
itself, so that an unexpected greater width could be obtain
Of course, this will not be the case if a sufficiently sm
-

l

-

-

s
is

y
a

n
d.
l

value of the interface thicknesse is used, so that the condi
tion euku!1 is satisfied for the length scale set by the surfa
tension:e!AB.

VI. CONCLUSIONS

We have introduced a phase-field model for Hele-Sh
flows with arbitrary viscosity contrast, and shown it to yie
the proper sharp-interface limit. We have actually found t
independent small parameters~e and ẽ! and three distinct
conditions on them to control the convergence to the sha
interface limite,ẽ˜0. In particular,ẽ must be lowered when
c is increased. A thin-interface model, i.e., an effective sh
interface model keeping finite-e and -ẽ effects, has been de
rived for the dynamics of the phase-field model up to fi
order in both of these parameters. This thin-interface mo
has then been used to compute the finite-e and -ẽ corrections
to the Hele-Shaw result explicitly for a specific situatio
such as the linear regime, thus suggesting that the sin
finger width selection could also be affected by these fin
thickness effects.

In the following paper@23# we perform numerical simu-
lations of the phase-field model@Eqs. ~2.7! and ~2.8!#, and
we explicitly vary the two small parameterse andẽ indepen-
dently. In this way we both control the simulation accura
through the conditions mentioned to show how to reprod
the Hele-Shaw dynamics within this method, and explici
check convergence in the interface thickness.
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APPENDIX

Our goal here is to rescale the differential operators
pearing in the phase-field model@Eqs. ~2.7! and ~2.8!#. The
first step will be to rewrite them in terms of the local coo
dinates defined on the interfacer ands. To do this, one must
precisely define the curvilinear coordinate system and co
pute its so-called scale factors:

Consider theu50 level set and its intrinsic coordinatess
~the arclength along it! andr ~the signed distance to it, pos
tive for a point withu.0!, so thatŝ3 r̂ 5 x̂3 ŷ. Let a be the
angle going fromx̂ to ŝ. Thenk5as is the u50 level-set
curvature. We introduceX andY as the values ofx andy for
a point on theu50 curve with a given value ofs. By moving
this point infinitesimally alongs we find that these value
have changed indY5dssina, dX5dscosa. Consider also
the coordinatesx andy of a point withuÞ0 in terms of the
valuesX andY of its closest neighbor on theu50 level set,
and the signed distance between them. Taking into acco
that a is also the angle going fromŷ to r̂ , one findsx5X
2r sina and y5Y1r cosa. Now one can compute the
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~positive defined! scale factors

hr
2[xr

21yr
251⇒hr51, ~A1!

hs
2[xs

21ys
25~Xs2ras cosa!21~Ys2ras sina!2

5~cosa2rk cosa!21~sina2rk sina!2

5~12rk!2⇒hs5u12rku512rk. ~A2!

Note that the last equality in Eq.~A2! requires thatrk,1. In
the inner region, where we make use of such formulas,
will hold as long as the interface thicknesse is much smaller
than the curvature radius at any point of the interface,
not too far from the sharp-interface limit. Otherwise t
present analysis would break down, because one could
ways find a point such thatrk51, wherehs would vanish,
reflecting the fact that the change of coordinates has bec
ambiguous ins.

Then, the scale factors are used to express the differe
operators in terms ofr ands:

¹W a5ar r̂ 1
as

12rk
ŝ, ~A3!

¹W •aW 5~ar !r1
2kar1~as!s

12rk
~aW 5ar r̂ 1asŝ!, ~A4!

¹2a5arr 2
kar

12rk
1

ass

~12rk!2 1
rksas

~12rk!3 . ~A5!

Finally, one setsr 5er and expands in powers ofe:

~12rk!21511erk1O~e2!. ~A6!

One obtains

¹W a5
1

e
Ar r̂ 1 ŝAs@11erk1O~e2!#, ~A7!

¹W •aW 5
1

e
~Ar !r1@~As!s2kAr #@11erk1O~e2!#,

~A8!

¹2a5
1

e2 Arr2
1

e
kAr2rk2Ar1Ass1O~e!. ~A9!

This completes the rescaling. Capital letters denote fie
written in the rescaled coordinates of the inner region. A
other quantity appearing in Eqs.~2.7! and ~2.8! is derived
from these. For instance, we obtain
is

.,

al-

e

ial

s
y

]a

]t
[

]a

]t U
x,y5const

5
da

dt
2vW •¹W a

52
vn

e
Ar1

da

dt
2v tAs1O~e!, ~A10!

where the partial~total! time derivative is computed keepin
x andy ~r ands! fixed, andvW is the velocity of ther,s frame
with respect to thex,y one, i.e., the interface velocity. More
over,

ẑ•~¹W c3¹W u!5
1

e
$CsQr@11erk1O~e2!#

2CrQs@11O~e!#%, ~A11!

¹W •~u¹W c!5
1

e2 ~QCr!r1~QCs!s2
1

e
kQCr~11erk!

1O~e!

5
1

e2 ~QCr!r2
1

e
kQCr2rk2QCr1~QCs!s

1O~e!. ~A12!

The only terms left in Eqs.~2.7! and~2.8! to compute are
those containingg~u! and k~u!. To construct them we will
need the following quantities:

u¹W uu51A 1

e2 Qr
21Qs

2@11O~e!#2

51
Qr

e
A11e2

Qs
2

Qr
2 @11O~e!#2

51
Qr

e F11
e2

2

Qs
2

Qr
2 1O~e3!G

5
Qr

e
1

e

2

Qs
2

Qr
1O~e2!. ~A13!

~note thatUr.0, sinceQ is monotonic inr and we defined
r to be positive for theu.0 phase! and

r̂ ~u![
¹W u

u¹W uu
5

e/Qr

e/Qr
3

¹W u

u¹W uu
5

r̂ 1 ŝe~Qs /Qr!@11O~e!#

11e2 1
2 ~Qs

2/Qr
2!1O~e3!

5 r̂ F12
e2

2

Qs
2

Qr
2 1O~e3!G1 ŝFe Qs

Qr
1O~e2!G . ~A14!

We have termed thisr̂ (u) because it is indeed the unit vecto
normal to theu5const level set on which it is computed. W
similarly defineŝ(u)[ r̂ (u)3 ẑ and k(u)[2¹W •(¹W u/u¹W uu)
to constructg(u)/2[Bŝ(u)•¹W k(u)1 ŷ• ŝ(u):
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2k~u![¹W •
¹W u

u¹W uu

52
e

2 S Qs
2

Qr
2D

r

1eS Qs

Qr
D

s

2k~11erk!1O~e2!

52k1eF S Qs

Qr
D

s

2
1

2 S Qs
2

Qr
2D

r

2rk2G1O~e2!,

~A15!

¹W k~u!52 r̂ F S Qs

Qr
D

sr

2
1

2 S Qs
2

Qr
2D

rr

2k21O~e!G
1 ŝH ks1eF2S Qs

Qr
D

ss

1
1

2 S Qs
2

Qr
2D

rs

12rkksG
1O~e2!J @11erk1O~e2!#

52 r̂ F2k21S Qs

Qr
D

sr

2
1

2 S Qs
2

Qr
2D

rr

1O~e!G
1 ŝH ks1eF3rkks2S Qs

Qr
D

ss

1
1

2 S Qs
2

Qr
2D

rs
G

1O~e2!J , ~A16!
. A
.

J.

ut

,

,

g~u!

2
5BH ks1eF3rkks2S Qs

Qr
D

ss

1
1

2 S Qs
2

Qr
2D

rs
G

1e
Qs

Qr
F2k21S Qs

Qr
D

sr

2
1

2 S Qs
2

Qr
2D

rr
G J

1 ŷ• ŝ2e
Qs

Qr
ŷ• r̂ 1O~e2!

5
g

2
1O~e!. ~A17!

We should still compute the productk(u)u¹W uu appearing in
Eq. ~2.8!, but instead we prefer to compute straight ahead
sum ¹2u1k(u)u¹W uu5¹2u2¹2u1(¹W u/u¹W uu)•¹W u¹W uu
5 r̂ (u)•¹W u¹W uu:

¹W u¹W uu5 r̂ FQrr

e2 1
1

2 S Qs
2

Qr
D

r

1O~e!G1 ŝFQrs

e
1O~e0!G ,

~A18!

¹2u1k~u!u¹W uu5
Qrr

e2 1
1

2 F S Qs
2

Qr
D

r

2
Qs

2

Qr
2 Qrr12

Qs

Qr
QrsG

1O~e!

5
Qrr

e2 1
QsQrs

Qr
S 11

1

Qr
D2

Qs
2Qrr

Qr
2

1O~e!. ~A19!
R.
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and A. Buka, Physica D99, 359 ~1996!; T. T. Katona, T.
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